Harlequin Problem of ECMO

A/Prof Kiran Shekar MBBS, FCCCM, FCICM, PhD Deputy Head, Critical Care Research Group Senior Specialist, Adult Intensive Care Services The Prince Charles Hospital, Brisbane, QId, Australia

Conflicts of interest

None relevant

I have permission to use the photos used in this presentation

THE ECLS HOTPOT

VA

S.Z

15

Objectives

 Appreciate spectrum of cardiorespiratory failure and ECLS therapies

 Understand mechanisms behind harlequin syndrome

 Discuss techniques to recognize and disrupt upper body hypoxia on VA ECMO

Spectrum of cardiorespiratory failure

- Predominant respiratory failure
- Predominant cardiac failure
- Combined cardiorespiratory failure
 - cardiac >>respiratory
 - respiratory >> cardiac

Conventional therapy

Mechanical ventilation +/- adjuncts

- Vasoactive agents and IABC
- Renal replacement
- Other supportive ICU care

Conventional therapies can fail

Expanding use of ECLS

• Extracorporeal respiratory support

Mechanical circulatory support (MCS)

 Advanced ECLS providing both respiratory and circulatory support

Extracorporeal respiratory support

- More straight forward
- VV ECMO or ECCO2R
- Cardiac function often improves after VV ECMO

Small group needs additional MCS

MCS far more complex

• Its all about choosing the

Right perfusion strategy Right time Right patient

The Grey Scale of MCS

- Acute Heart Failure
 - IABP
 - VA ECMO
 - Temporary LVAD/ BiVAD +/-oxygenator
 - Percutaneous VAD's
- Chronic Heart Failure
 - LVAD/ RVAD
 - Total Artificial Heart

REVIEW

Mechanical circulatory support in the new era: an overview

CrossMark

Kiran Shekar $^{1,2*}\!\!\!\!$, Shaun D. Gregory 1,2 and John F. Fraser $^{1,2}\!\!\!$

Adult MCS Pathways

Spectrum of Acute MCS therapies

Is there a perfect MCS strategy

- NO
- All available options have risks/benefits
- Tailored to patient
- Often Incremental
- Fem-Fem VA ECMO a good starting point for most patients

Femoro- femoral VA ECMO

VA ECMO use and outcomes

ECLS Registry Report

International Summary January, 2016

Extracorporeal Life Support Organization 2800 Plymouth Road Building 300, Room 303 Ann Arbor, MI 48109

Overall Outcomes					
	Total Patients	Survive	ed ECLS	Survived to D	C or Transfer
Neonatal					
Respiratory	28,723	24,155	84%	21,274	74%
Cardiac	6,269	3,885	62%	2,599	41%
ECPR	1,254	806	64%	514	41%
Pediatric					
Respiratory	7,210	4,787	66%	4,155	58%
Cardiac	8,021	5,341	67%	4,067	51%
ECPR	2,788	1,532	55%	1,144	41%
Adult					
Respiratory	9.102	5.989	66%	5.254	58%
Cardiac	7,850	4,394	56%	3,233	41%
ECPR	2.379	948	40%	707	30%
Total	73,596	51,837	70%	42,947	<mark>58%</mark>

Critical Care

Myocarditis

Results. Mean VA-ECMO support was 9.9 ± 19 days (range, 2 to 24 days). Cardiac recovery with ECMO weaning was achieved in 43 patients (75.5%), major complications were observed in 40 patients (70.1%), and

survival to hospital discharge occurred in 41 patients (71.9%). After hospital discharge (median follow-up, 15 months) there were 2 late deaths. The 5-year actual survival was $65.2\% \pm 7.9\%$, with recurrent self-recovering myocarditis observed in 2 patients (at 6 and 12 months from the first AFM event), and 1 heart transplantation.

Critical Care

Venoarterial Extracorporeal Membrane Oxygenation for Acute Fulminant Myocarditis in Adult Patients: A 5-Yea Multi-Institutional Experience

(Ann Thorac Surg 2016;101:919-26)

ICET-&

Table 4.	Multivariate	Analysis
10000 10		i horry ore

Variable	β	SE	Exp (ß)	p Value
pH before ECMO implantation	-14.251	7.148	.000	0.046
Lactate normalization, hours from ECMO implantation	0.029	0.012	1.029	0.013
Cardiac recovery	5.288	1.769	197.930	0.003

VA ECMO : major challenges

- Maintaining LV ejection
- Preventing upper body hypoxia
- Distal limb perfusion

Peripheral VA ECMO: considerations

- Only an adjunct to native heart
- ↑LV after load and ↓LV ejection
- Pulmonary reserve and upper body hypoxia

Attempts to ↑ LV ejection worsen upper body hypoxaemia in setting of ↓pulmonary function

Pulmonary reserve and peripheral VA ECMO

- Normal
- Marginal
- Can get worse subsequently : pulmonary edema , haemorrhage , infection etc

Do marginal lungs matter if heart is not ejecting well ?

Cardiac reserve and peripheral VA ECMO

- Can get better or worse
- Consequences depend on pulmonary reserve and LV distension and need for venting

Fem –fem VA ECMO

If lungs good ,

Double thumbs up !! If not,

bit of a problem

16 y old ,pneumonia , septic shock

Day 1 SOFA score = 17

16 y old ,pneumonia , septic shock

- Presenting in extremis
- Severe cardiac failure , but not critically hypoxic
- Urgent fem-fem VA ECMO
- Over next 2 days heart gets better, lungs get worse -> differential hypoxia
- Changed to VV ECMO
- Weaned off VV ECMO after 44 days

Understanding differential hypoxia

Peripheral VA ECMO and systemic oxygenation

Minimal LV ejection +/- bad lungs = retrograde perfusion from ECMO= less risk of upper body hypoxia

Some LV ejection + bad lungs = upper body hypoxia

fem-fem VA ECMO and harlequin

Differential venous oxygen return
 SVC Sao2 <<< IVC Sao2

 Lower body perfused with ECMO and upper body from native cardiac ejection

Two circuits

Two independent circuits

Critical Care

RESEARCH GROUP

ICET

ICET-&-LAB

Critical Care RESEARCH GROUP

Hou et al. Critical Care (2015) 19:68 DOI 10.1186/s13054-015-0791-2

RESEARCH

Superior vena cava drainage improves upper body oxygenation during veno-arterial extracorporeal membrane oxygenation in sheep

Xiaotong Hou^{1,2*}, Xiaofang Yang^{1,2}, Zhongtao Du^{1,2}, Jialin Xing^{1,2}, Hui Li^{2,3}, Chunjing Jiang^{1,2}, Jinhong Wang^{1,2}, Zhichen Xing^{1,2}, Shuanglei Li¹, Xiaokui Li⁴, Feng Yang^{1,2}, Hong Wang^{1,2} and Hui Zeng^{5,6*}

ICET-&+LAB

Is IVC-FA really a good option?

Table 1 The difference of oxygen saturation between IVC-FA and other approaches of cannulation

	SVC-FA	IVC-CA	FA-IJV
SVC	30.9 ± 0.5	39.6 ± 1.7*	46.4 ± 1.4
PA	40.2 ± 1.4	38.3 ± 1.2	22.0±0.4 ^{*#}
Aorta	40.3 ± 0.9	63.9 ± 1.3*	22.1 ± 0.6 ^{*§}
IVC	-1.3 ± 0.9	-18.8 ± 1.8^{-1}	-7.6 ± 0.7 ^{*#}

Critical Care RESEARCH GROUP

Retrograde flow on IVC-FA VAECMO

Figure 3 Aorta angiography in IVC-FA. (a) The diagram of aorta angiography. (b) Representative photos in the early stage of angiography. (c) Representative photos in the intermediate stage of angiography. (d) Representative photos in the late stage of angiography. The black arrow shows the contrast medium, which could only reach the diaphragm level. IVC-FA: inferior vena cava through the fernoral vein and a return cannula was inserted into the fernoral artery.

SVC-FA vs. IVC -FA

Critical Care

RESEARCH GROUP

IVC-FA : contrast from IVC doesn't reach RA

SVC –FA: contrast from SVC doesn't reach RA

Harlequin avoidable

- Optimal RA drainage from start
- Careful monitoring
- Optimal medical management
- Timely change of ECLS configurations

Monitoring for differential hypoxia

- Spo2/Pao2 both radial arteries, esp. R radial
- Neuro monitoring , NIRS, Bto2
- Jugular oximetry
- PA catheter -> SVO2
- Pre oxygenator sao2/pao2 poor predictors

Disrupting differential hypoxia

Medical measures

- Optimise mechanical ventilation, add inhaled nitric oxide /prostacyclin
- Minimise O2 consumption : sedation, paralysis, hypothermia
- Haemoglobin ~100
- Reduce inotropy if possible
- Modulate HR if native CO relatively high

Harlequin :problem or positive sign ?

- Bad news is lungs are bad
- Good news is heart is ejecting

Is the heart good enough to wean from VA ECMO

Perfusion strategies

- Change to VV ECMO ± inotropes, IAB/ pVAD
- Advance IVC cannula to RA/SVC
- VAV :Return oxygenated blood to RA
- VVA: additional SVC drainage cannula
- Upper body arterial return: subclavian
- Central VA ECMO

ICET

 LVAD/BiVAD configurations with oxygenator in circuit

RESEARCH GROUF

Change to VV

- Tricky as heart not fully recovered
- Turn down for assessment may precipitate upper body hypoxia crisis due to

 LV ejection
- Much safer to have another venous cannula in before turn down : if heart good change to VV if not to VAV
- If heart not fully recovered –pVAD one short term option

Push IVC cannula into SVC

- Safety concerns
- Not recommended as first line option

VAV ECMO

Return on left and right side of circulation

Increases respiratory support

Decreases cardiac support

Modulating return flows on both sides can be tricky

L. Christian Napp¹ · Christian Kühn² · Marius M. Hoeper³ · Jens Vogel-Claussen⁴ · Axel Haverich² · Andreas Schäfer¹ · Johann Bauersachs¹

Clin Res Cardiol (2016) 105:283-296

VVA ECMO

Better RV unloading

Draining hypoxic SVC blood for oxygenation

Dual lumen cannula an option but flows limited

L. Christian Napp¹ · Christian Kühn² · Marius M. Hoeper³ · Jens Vogel-Claussen⁴ · Axel Haverich² · Andreas Schäfer¹ · Johann Bauersachs¹

Clin Res Cardiol (2016) 105:283-296

Subclavian /axillary/carotid return

Cannulation not always possible

Differential flows UL oedema

Central VA ECMO

More relevant to paediatrics Invasive procedure in sick patients Allows for LV venting if need be Bleeding risks

LVAD /RVAD/ BiVAD with oxygenator in circuit

ICET-OM-LAB

ECMO circuit as temp VAD

ECMO circuit as temp BiVAD

1 pump
2 pumps
+/- Oxygentorar

Shekar et al. Critical Care 2014, 18:219 http://ccforum.com/content/18/2/219

Other Alternatives

- Combining pVADs (Impella or Tandem Heart) with VV ECMO
- costs
- short term use and arterial complications
- Hemolysis

Summary

- Harlequin syndrome a real problem esp. with fem-fem VA ECMO
- Draining just IVC/SVC suboptimal
- RA drainage and optimal medical management minimizes risks

ICET-

 Early recognition and timely change of ECLS configurations critical

RESEARCH GROU

A very warm welcome to Brisbane

APELSO Gold Coast, Australia, October 2017

The 3rd Conference of

Asia-Pacific Extra-Corporeal Life Support Organization ECMOand Beyond

www.apelso2017.com

Adult Intensive Care Services, The Prince Charles Hospital

COLLABORATING INSTITUTIONS

The Prince Charles Hospital

University of QLD

University of NSW

Helmholtz Institute Aachen

Queensland University of Technology

Griffith University

Ibaraki University

Gunma University

Institut Jantung Negara

University of Malaya

University of Alabama at Birmingham

Aston University

The Alfred Hospital

St Vincents Hospital

HDZ NRW Bad Oeynhausen

Rikshospitalet, University hospital Oslo

Texas Heart Institute

THANK YOU