心血管手术中的 抗凝与拮抗

阜外医院体外循环科 赵 举

历 史

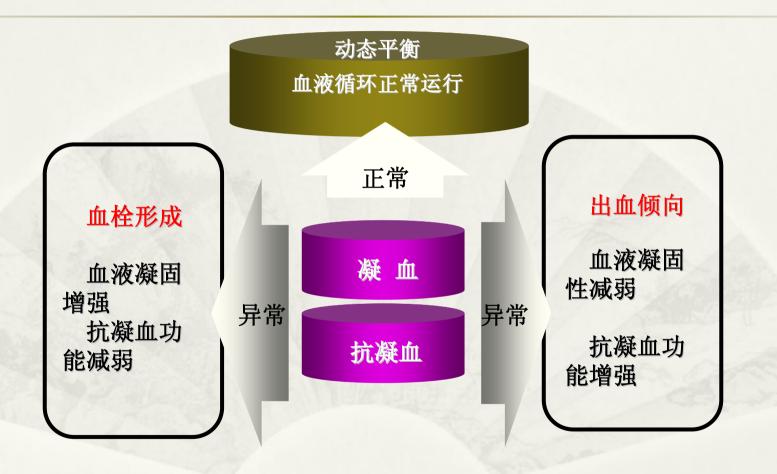
凝血--抗凝

凝血系统

凝血因子

血小板

动态 平衡

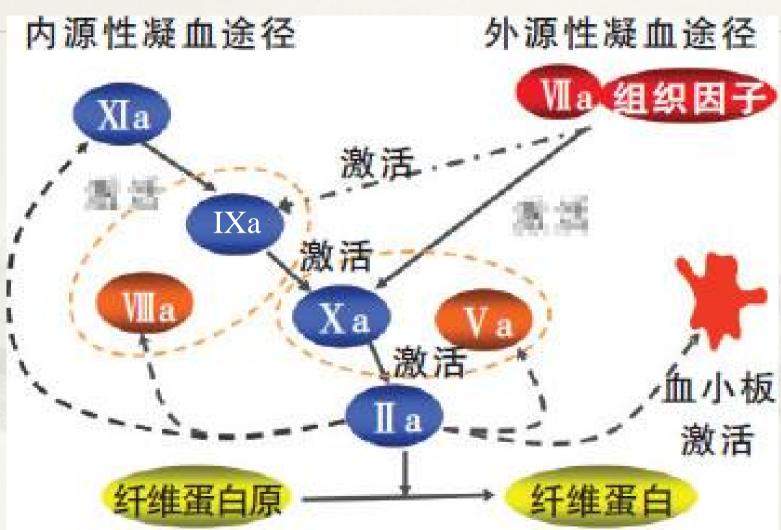

> 内皮细胞 阻隔、分泌 调控作用

抗凝系统

体液抗凝 肝素, **AT**III 蛋白**C**系统

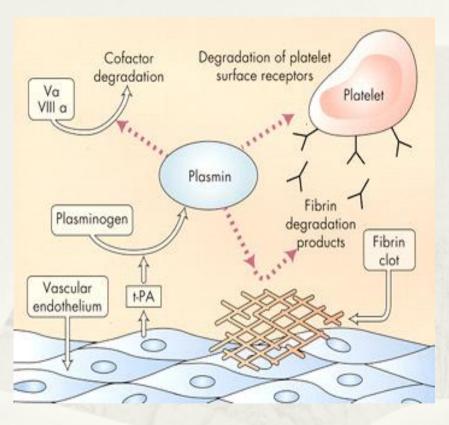
> 纤溶系统 细胞吞噬 血液流速

凝血 -- 抗凝


凝血、抗凝血动态平衡

共同维持

凝血、抗凝 血及纤溶 相关因子 血细胞 质和量 血管结构和 血管内皮细 胞功能


血液流变 学

凝血

Summary of intrinsic and extrinsic pathways of coagulation Extrinsic pathway Intrinsic pathway Vascular endothelial injury Tissue factor/ VIIa complex Prothrombinase complex Cross-linked Fibrinogen = fibrin monomer

凝血

ß 凝血系统基本生理功能

▶ 血管损伤引起出血时,通过血液 凝固的链式酶切反应,使可溶性 纤维蛋白原转化为纤维蛋白单 体,进而聚合成可溶性纤维蛋白 白,再交联成不溶性纤维蛋白

B 一期止血

▶ 在血管受伤的局部首先出现血小板粘附,聚集形成血小板血栓

B 二期止血

b 纤维蛋白包绕血小板及其他血细胞,形成坚固的血栓

抗凝与纤溶

- B 阻止血液凝固
 - ь 抗凝血酶Ⅲ
 - ▶ 肝素
 - ▶ 蛋白C系统
 - ▶ 蛋白S系统
 - ▶ 内皮系统

- ß 纤溶系统
 - ▶ 纤溶酶原激活
 - Ý 纤溶酶原
 - ý 激活物
 - Ý 抑制物
 - ▶ 纤维蛋白溶解
 - Ý 纤维蛋白原
 - y 可溶性纤维蛋白单体
 - Ý 交联性纤维蛋白单体

CPB期间的抗凝

- B目标
 - D 预防临床中由于血液与大量的异物表面接触而形成血栓
- B 个体化原则
- B肝素化不能完全阻止血栓的形成
- B 血栓形成的同时伴有凝血因子的消耗
- B明确凝血因子在抗凝治疗中的角色

抗凝剂-肝素

- ß CPB中主要抗凝剂
- B 与 ATIII结合, 通过抑制 X (Xa) 激活和 Prothrombin 转化为thrombin. 从而阻止血栓形成
- B ATⅢ-肝素复合物强化了对Ⅱa, Xa的抑制作用,标准肝素可加快抗凝血酶反应1000倍

NORMAL CLOT

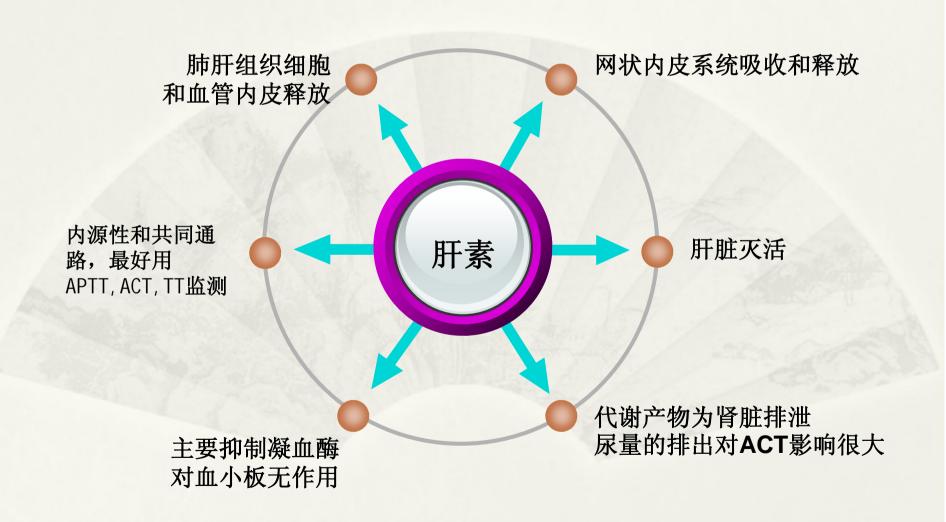
Prothrombin + Thrombin + Ca⁺² = Thrombin Thrombin + Fibrinogen = Fibrin

COAGULATION WITH HEPARIN

Prothrombin + Ca⁺² ——/—→ Thrombin

Antithrombin III →

BINDS


Heparin

肝素药理作用

肝 素

- ß 硫酸粘多糖
- в 带负电荷

肝 素

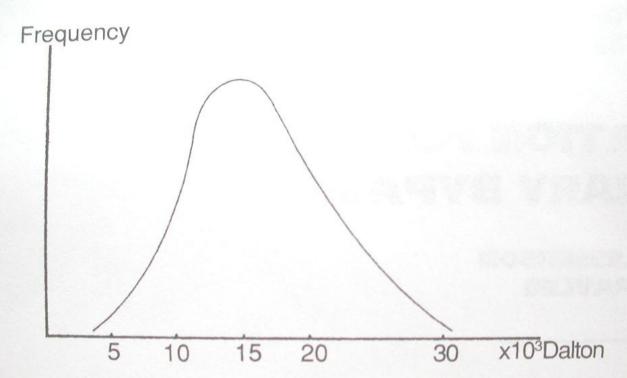
肝素分类

肝素

"传统"肝素:

临床使用的商品纯 化肝素;

猪肠粘膜(肝素钠)或牛肺(肝素钙)提取;非单一物质,为许多成分的组合,分子量4000~30000


低分子量肝素:

肝素经酶法或化学法解 聚形成;

相比传统肝素其抗凝作用强、皮下注射容易吸收、副作用小;

也是非均一性的,抗凝作用也不同,最小分子量一般为1200~1500,峰值在4000~6000

传统肝素特性

FIG. 22.1. Molecular weight distribution pattern of a typical commercial preparation of unfractionated heparin. (From Stiekema JCJ. Heparin and its biocompatibility. *Clin Nephrol* 1986; 26[Suppl 1]:S3–S8, with permission.)

肝素的半衰期

ß 半衰期与剂量有关

ß低温可延长半衰期

U/kg	100	400	800
小时	1	2.5	5

低分子量肝素(LMWH)

优点:

很少与血小板结合, 不影响血小板功能

对 X a 的抑制比对 II a的抑制强3-5倍

皮下注射半衰期长(4-7h)

生物利用度高达100%

不易引起出血和 肝素诱发的Pt减少症

克赛一最低分子量的肝素 速碧林一低分子量肝素钙

缺点:

抑制凝血酶形成和 活性方面不如标准肝素

难以监测和鱼精蛋白拮抗

静注后临床作用 持续4h以上

价格昂贵

CPB中未作为抗凝选择

肝素化

2000u预充 液肝素化

400u/kg静脉 全身肝素化 肝素化

1000u/200ml 库血肝素化

给肝素注意事项

- ß 给肝素前测基础值
- a 中心静脉给予
 - ▶ 经中心静脉导管注入肝素400U/kg可立即起抗凝作用
- B 在血压极低和全身血流不佳时的评估
- ß给肝素3-4分钟后,抽血测ACT
 - ▶ 95%的病人显示肝素注入后4min时ACT值最高
- ß 常温、长时、多尿注意追加
- ß 不与麻醉药、血管活性药和正性肌力药混合

病例分析 1

- B 8岁,20kg,女性患儿,术前诊断室间隔缺损,拟行修补术
- ß 预充乳酸林格液900ml及库血400ml,未加肝 素抗凝
- s 转前常规静脉给予肝素400u/kg,ACT>500 后开始转机

病例分析 2

- B CPB半分钟后,发现氧合器滤网上有絮状凝血物质形成
- B 同时见动脉微栓滤器及其后的动脉管路内出现凝血块
- ß 即刻停机更换氧合器及全套管路系统,重新建立CPB
- в 于氧合器中预充肝素400u/kg, CPB40min
- в 转中ACT>700s,尿量500ml
- ß 术中头部冰帽、甲强龙、甘露醇等脑保护
- B 术后6小时多项神经病理反射阳性
- в 术后48小时CT显示"双侧多发性脑梗死"
- ß 患儿长期呈浅昏迷状态

病例特点

- B 含钙液体与枸橼酸抗凝的库血同时预 充,但未补加肝素抗凝
- ß CPB开始即发现系统内凝血,尤其是动脉管路出现凝血块
- B 更换氧合器和动脉管路后,虽实行脑保护,但术后仍有严重的神经系统并发症
- ß 术后出现脑梗死

病例小结

- в Ca²⁺为IV因子,枸橼酸类血液保养液是将血浆中的Ca²⁺络合发挥抗凝作用
- B CPB前,含Ca²+液体与枸橼酸抗凝的血制品同时 预充时,须补充肝素加强抗凝
- B CPB中发现严重凝血时,需果断停机更换全套体外系统,并将患者置于头低位(应大于15°),同时积极应用脑保护
- ß 术后早期实行溶栓治疗

肝素降压作用

- B制备时使用消毒剂苯甲醇
- B 牛肺或猪肠粘膜含大量组织细胞和组胺
- B 成品含污染物质刺激组织细胞释放组胺
- ß 肝素过敏
- ß活化脂蛋白脂肪酶

肝素耐药原因

- ß 正在进行的肝素治疗
- ß 合并血小板增多症
- в AT III 缺乏
- a 冠心病
- ß 抗凝治疗
- B DIC
- ß 药物治疗不当

Table II Causes of Heparin Resistance

- 1. Ongoing heparin therapy
- 2. Marked thrombocytosis
- 3. Anti-thrombin-III deficiency
- 4. Coronary artery disease
- 5. Ongoing coagulation
- 6. Heparin-induced thrombocytopenia
- 7. Disseminated intravascular coagulation
- The patient did not receive an appropriate dose of pharmacologically active heparin. The wrong drug was administered or an outdated preparation used (not true heparin resistance)

ATIII 降低

- в ATIII水平低下或活性不足为肝素耐药最大原因
- B 一般追加肝素用量可解决
- B 肝素>700U/Kg而ACT<450s时,输FFP或新鲜全血或ATIII浓缩物

ATIII 缺乏

- ß 危重新生儿循环血中 ATIII 常常低下
- B 长时间CPB患者
- B肝功能低下
- B伴有粘液瘤者

肝素诱导的血小板减少

- в 5%-28%肝素治疗患者发生
- B I 型为轻度血小板减少
- ß II型为白色血栓综合症(HIT)

白色血栓综合症 (HIT)

- ß 发生率0.3%,常发生于肝素治疗后5-12d
- в 后果严重:器官严重损伤,死亡率较高
- B 进行性血小板下降,低于基础值50%或<10*10%L, 出现主动脉远端血栓,深静脉血栓等栓塞
 - ▶ 提示可能发生HIT
- в 肝素/血小板IV因子ELISA检测HIT抗体

白色血栓综合症 (HIT)

- в 病理: 损害源于抗原抗体复合物激活诱发的血管内血栓形成
- B 采用非肝素依赖的抗凝措施
- ß 禁忌成分输血补充血小板,
 - p 会促进血小板凝集,加重血栓形成造成的损害

肝素替代物

名称	T _{1/2}	消除	特点
重组水蛭素	40-120min	肾	反复输注有过敏反应 肾衰患者有蓄积 出血
阿加曲班	40-50min	肝	肝衰患者有蓄积,但便于检测
比伐卢定	25min	蛋白水解 80% 肾20%	使用经验有限 术中有血凝块形成
那达肝素	19-25h	肝	肾衰患者有蓄积 有交叉反应 出血

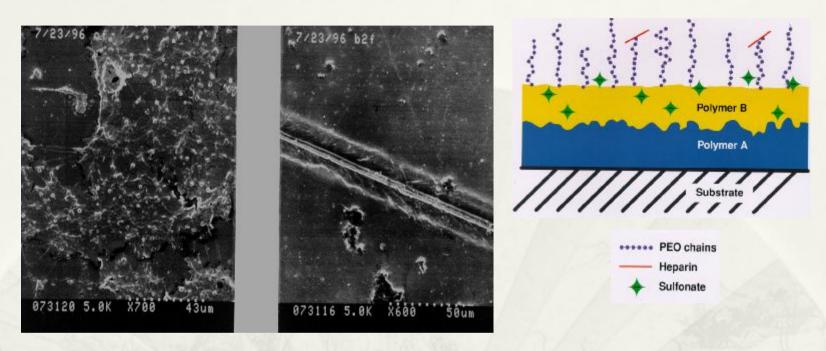
肝素替代物

- ß阿加曲班
 - p 肝代谢,可用于肾衰病人,半衰期长短合适
- ß重组水蛭素
 - ▶ 一种结合牢固的凝血酶抑制剂,只抑制形成 后的凝血酶
 - ▶ 在减少CPB中凝血酶形成和活动,不如标准 肝素有效

具体药物应用

药物	首剂量	预充量	泵速	目标	停药
重组水蛭素	0.25 mg/kg	0.2 mg/kg	0.5 mg/min	ACT400-500s 15min一测	停机前 15分钟
阿加曲班	0.1 mg/kg	?	5-10 ug/kg/mi n	ACT200-400 15min一测	停机时
比伐卢定	0.75 mg/kg	?	1.75 mg/kg/h	ACT400-500 15min一测	停机时
那达肝素	125 u/kg	3u/ml	7u/kg	抗Xa水平 1.5u/ml	停机前 45分钟

停机后的处理


- ß 停机后机器内需持续泵入抗凝药物进行自循环,直至确认不需要转机后,将血打入cell-saver洗去抗凝药
- в 80%可以被洗掉

肝 素

- B肝素用于预防凝血
- B 不能终止已经发生的凝血反应!!
- B抗凝应尽量减低凝血的起始发生程度

减少TF (tissue factor)生成释放!!

肝素涂抹技术

肝素涂抹技术(HCS)表面移植了肝素,抑制凝血酶,同时抑制纤维蛋白原吸附,使血小板不易激活

在肝素一端的粘多糖进行共价键结合,可将肝素牢固植入膜内,而另一端的功能基团具有抗凝活性

肝素涂抹技术(HCS)

HCS抑制补体旁路激活

减少CPB中 C3b和补体复合物产生

HCS表面移植肝素

使白细胞黏附明显减少

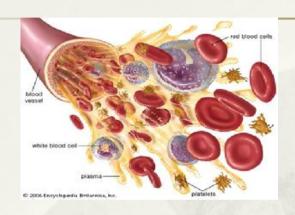
HCS表面移植肝素

与ATIII结合抑制凝血酶,同时抑制纤维蛋白原吸附 使血小板不容易激活

肝素抗凝

肝素化使血液不凝 但血液接触异物发生变化: 血小板,白细胞,炎性介质

肝素涂层

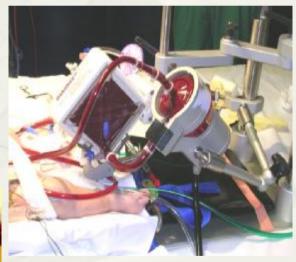

в Carmeda

▶ 肝素涂层通过共价键将肝素的一端结合在表面,具有抗凝活性序列一端与血液接触抑制纤维蛋白形成

в Trillium

▶氧化聚乙烯 (PE0) 链形成一水合动力表面,来排斥血浆中的蛋白,同时通过磺酸盐起到抗凝作用,带电荷的表面具有抗血栓作用,在大约10%的PE0链的末端结合着肝素

Surface/X- Coating



长时间、闭式、部分CPB

减少血液与异物的接触 减轻血小板、WBC、补体的激活

心脏手术组织损伤大, HCS使用时,还需要 全身肝素化

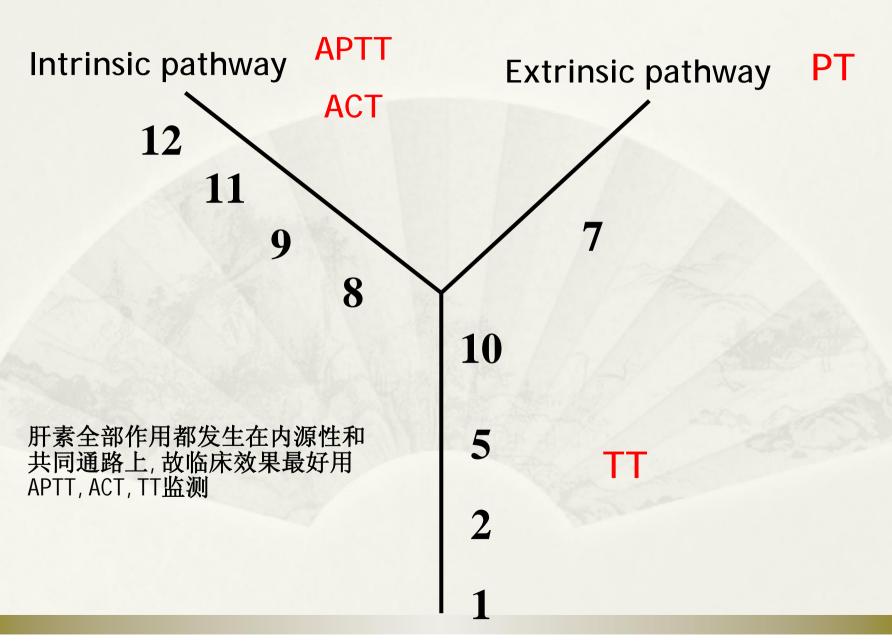
血小板抑制剂

- ß 磷酸二酯酶抑制剂 (双嘧达莫)
 - ▶ 可部分保护血小板,但血浆半衰期长达100min, 且止血效果欠佳
- ß CAMP催化剂(前列腺烷酸)
 - р 可保护血小板,但需要大剂量去甲肾上腺素维持 血压
- ß GPIIb/IIIa受体抑制剂
 - ▶ CPB中能有效防止血小板黏附和聚集,但均不能 抑制血小板凝血酶受体

抗凝监测

常用出凝血功能监测

- в 出血时间(BT)
 - ▶ 正常值Ducke法为1~3min
- ß凝血时间(CT)
 - ь 毛细玻管法3~7min
 - ь 试管法5~12min
 - ▶ 玻片法2~5min
- в血小板计数(BPC)
 - ▶正常值: (100~300)×109/L


常用出凝血功能监测

- в 凝血酶原时间(PT)
 - ▶ 正常值: 12±1s, 活动度为80%~120%
- ß 激活部分凝血活酶时间(APTT)
 - ▶ 反映因子 I; FII; ; FV; FVII; FIX; FX; FXI; FXII的活性
 - р 正常值<31s, 检测内源性通路和共同通路
 - p 对小剂量肝素较为敏感,对判断肝素反跳有较大帮助
 - P APTT延长仅受肝素影响,用抑肽酶时不延长
- ß 凝血酶时间(TT)
 - ▶ 正常值为16~18s, 是检测共同通路终端上纤维蛋白原变成纤维蛋白的方法
 - ▶ 延长超过正常对照3s,提示血液含肝素或类肝素物质,纤维蛋白原减少或纤维蛋白降解产物 (FDP) 的抗凝活性增高

常用出凝血功能监测

- ß 纤维蛋白原测定
 - ▶ 正常值: 定量法为2~4g/L
- ß 纤维蛋白降解产物(FDP)
 - ▶ 正常值: 1~6mg/L。
- в 栓溶二聚体(D-Dimers)试验
 - ▶ 正常人血<100ng/ml, 血栓形成后>200ng/ml, DIC患者含量一般均在1000ng/ml以上。

正常凝血通路

肝素作用

- B 肝素治疗首先影响内源性通路: FIX 对肝素作用很敏感, 在PT受影响前, APTT已延长
- B 使用大剂量肝素时,在共同通路上凝血因子都受到抑制,故使APTT和PT都延长

ACT

- ß 激活全血凝固时间
- B 血液与外源激活物如硅藻土等接触引起凝血
- ß 凝血时间长短与肝素剂量呈线性相关
- B 正常值 90- 130 second

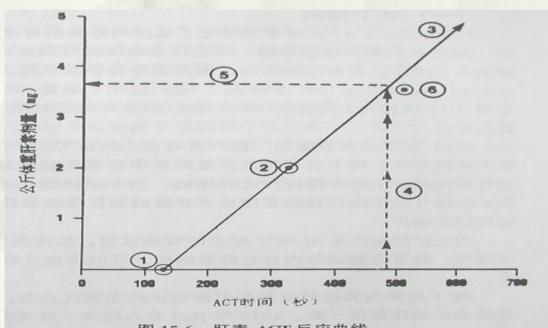


图 15-6 肝素-ACT 反应曲线

①ACT基础值;②按公斤体重给一定量肝素后 ACT 值; ③连接①、②两点并延长形成 ACT-肝素反应曲线;④ ACT为 480s 对应于肝素量;⑤375U/kg;⑥给足量肝素 后复查得到 ACT 值 480秒CPB 血液中无 纤维蛋白 单体

ACT激活剂

硅藻土

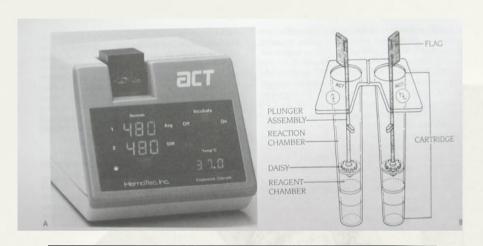
仅反映内源性通路;

硅藻土检测的ACT变动范 围大;

易受多种因素如血小板计数 和功能,纤维蛋白原水平,低 温,抑肽酶及鱼精蛋白过量 的影响

白陶土

反映内源性通路


使前激肽释放酶变成激肽释放酶;

直接激活因子XI;

白陶土ACT较好反映抗凝血水平 和凝血;

精确血浆测量系统校正显示:白陶土活性比前者高6~7倍.

ACT仪

影响ACT因素

TABLE 22.3. CLINICAL CONDITIONS INFLUENCING ACTIVATED CLOTTING TIME

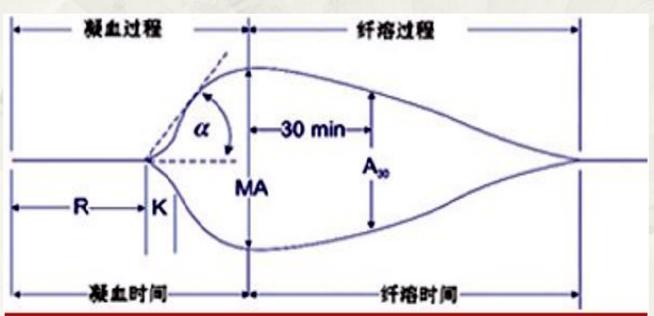
Condition	Effect on ACT		
Hypothermia	Increase (340,341)		
Hemodilution	Increase or NE (146,148,341,342)		
Thrombocytopenia	Increase or NE (106,147,148,342)		
Inhibition of platelet function	Increase (148,149)		
Lysed platelets	Decrease (151)		
Protamine	Increase (152,153)		
Aprotinin	Increase (154,155)		
Surgical incision	Decrease (123)		

NE, no effect; ACT, activated clotting time.

ACT异常

ß ACT缩短

- P 检查输注肝素的管 路、三通是否通畅
- p AT III 水平
- ▶ Heparin 药效下降
- p排出多


ß ACT过度延长

- ▶ 验证监测技术是 否有误
- ▶ 确认没有额外肝 素进入(ECMO)
- p 血液稀释
- p 低温
- P DIC
- P HIT

出、凝血的监测

B 血栓弹力图 (TEG)

鉴别凝血紊乱和外科性出血; 凝血因子缺乏与血小板功能障碍; 区分自身凝血功能障碍与抗凝药物影响

血栓弹力图 (TEG) 和原理

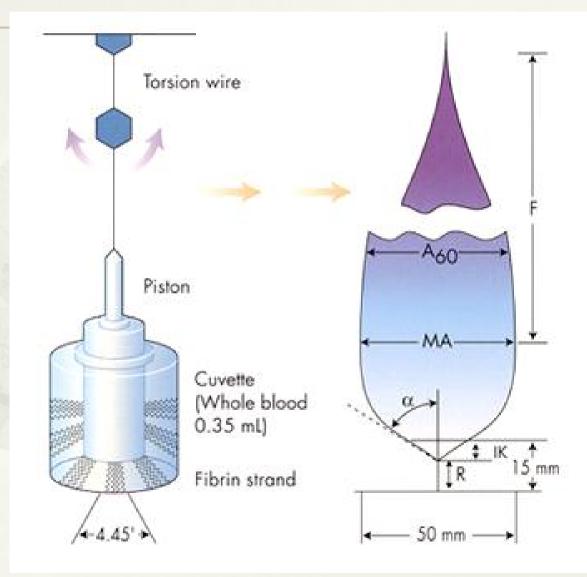


Figure 4. TEG tracings obtained from (top) normal patient; (middle) patient with thrombocytopenia; (bottom) patient with primary fibrinolysis.

TEG特点

- в TEG为全血凝固实验之一
- B 检测整个血凝块动力学(粘滞弹性)
- ß 体外循环后的TEG比常规凝血实验可更 好预测术后的凝血障碍
- a 在排除明显凝血紊乱方面具有最好的 定性指导

TEG与传统凝血实验的主要区别

в TEG

- 完整监测凝血开始,至血凝块形成及纤维蛋白溶解的全过程
- Pt聚集、纤溶进行凝血全貌的监测
- p 结果不受肝素类物质影响

ß 传统凝血实验

- 只检查离体血浆和凝血级联 反应中一部分
- p 凝血全过程片断、部分描记
- p 结果常受肝素类物质影响

TEG与传统凝血实验的区别

		凝血 全程	内源性	外源性	共同 通路	纤溶	肝素 影响
	TEG	0	0	0	0	0	X
	pt	X	X	0	X	X	0
A	\PTT	X	0	X	0	X	0
D-	Dimer	X	X	X	X	0	0
	TT	X	X	X	0	X	0
	ACT	X	0	X	X	X	0

肝素拮抗 鱼精蛋白

鱼精蛋白

- ß 碱性蛋白质,主要在鱼类成熟精子细胞核中作为和DNA结合的核精蛋白存在。
- ß 发现于1870年,到1940~1960年间,正式用作抗菌剂的研究才盛行起来。
- ß 中和肝素:对抗肝素过量导致的出血
 - ▶ 1mg硫酸鱼精蛋白可以中和
 - ¥ 90单位自牛肺制备的肝素钠
 - ▼ 115单位自猪肠黏膜制备的肝素钠
 - · 100单位自猪肠制备的肝素钙
- ß 鱼精蛋白—肝素复合物在体内代谢转化过程尚未被阐明。
- ß 鱼精蛋白也是一种弱抗凝剂,过量可引起凝血时间指标短暂轻度延长。

鱼精蛋白

鱼精蛋白鱼精蛋白鱼精蛋白

强碱性, 鲑鱼精子 的衍生物 (4500) 与酸性的 肝素紧使 肝素和 ATIII分 离 100u肝素需鱼精蛋白1mg(1:1)才能较中和肝素,但拮抗后血浆内仍有一定量的肝素1:1.5时,肝素含量才明显减少

回输余血时 每100ml肝 素血还应追 加鱼精蛋白 5mg

鱼精蛋白过量后ACT延长

•单独使用鱼精蛋白或超过肝素量有抗凝和抗血小板作用

鱼精蛋白毒性反应的类型

- ß 快速给药型
- ß 过敏样反应型
 - p 抗体介导过敏反应型
 - ▶ 非抗体介导的速发过敏样 反应型
 - ▶ 迟发过敏样反应型(非心源性肺水肿型)
- B致命肺血管收缩型

毒性反应-快速给药型

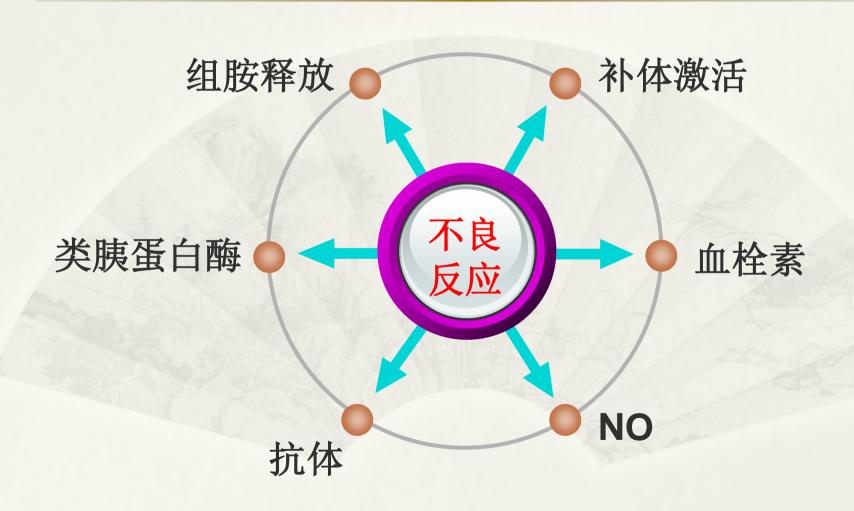
ß 表现

- p 体循环低血压
- ▶ 有研究表明血压下降和死亡率有明显 联系
- ▶ 给鱼精蛋白后30 分钟期间19 %的病人 平均血压下降20 %以上,并且明显与 住院死亡有关
- B 对策:输血、维持血压

毒性反应-过敏样反应型

- ß 抗体介导过敏反应型
 - ▶ 鱼精蛋白刺激产生抗体导致过敏反应
 - p 血压降低, 面色潮红, 水肿及支气管痉挛
- ß 非抗体介导的速发过敏样反应型
 - p 临床表现与前者相似
 - b 发生机理与补体激活有关
- B 迟发过敏样反应型(非心源性肺水肿型)
 - **b** 组织水肿

毒性反应-致命肺血管收缩型


ß 表现

- p 很少见
- p 肺动脉压升高
- p 右心膨胀
- p 低氧
- p 体循环低血压

ß 对策

- ß 降肺动脉压
- ß 抗过敏
- ß 纯氧吸入
- ß维持循环
- ß 等待恢复

鱼精蛋白不良反应

ß 组胺释放

- ▶ 使用鱼精蛋白后体循环阻力下降与组胺释放有关
- ▶ 在体外研究中,鱼精蛋白可以刺激人类心 肌细胞及肥大细胞释放组胺
- ▶ 预防性使用H₁,H₂受体阻断剂可以减弱鱼精蛋白在血液动力学的副反应

- ß 补体激活
 - ▶ 有研究表明,体外循环后,使用鱼精蛋白导致体内C₄水平大大的增加,表明肝素-鱼精蛋白复合物激活了经典的补体途径
 - ▶ C₃a和 C₅a的产生导致外周血管阻力降低

ß 血栓素

- ▶ 众多动物实验支持血栓素在鱼精蛋白 中和肝素时引起肺高压起关键作用
- ▶ 鱼精蛋白中和肝素时引起了血小板活 化因子(PAF)的增加,PAF刺激了 血栓素的产生

в NO的产生

- ▶ 研究表明,肝素或鱼精蛋白以及肝素--鱼 精蛋白复合物可以刺激血管内皮产生一氧 化氮(NO),导致血管扩张
- ▶ 鱼精蛋白中和肝素时引起的低血压能够被 NO合成抑制剂阻断

- ß抗体的产生
 - ▶ 鱼精蛋白是一种异种异体蛋白 质,理论上讲可以刺激人体免疫 系统产生抗体
 - р 病理机制还不清楚

发生机制

- ß类胰蛋白酶
 - ▶ 类胰蛋白酶是一种中性蛋白酶,存在 于肥大细胞内,可以激活补体,导致 过敏毒素 (C_{3a},C_{4a})的产生
 - p 鱼精蛋白可以刺激类胰蛋白酶的产生

鱼精蛋白毒性反应的预防

- в 病史调查
- ß 术前口服激素
- ß 预防性应用抗组织胺药
- B 血流动力学稳定
- ß 小量试用
- в 同时加钙剂,缓慢注药
- ß 鱼精蛋白的给药途径

毒性反应的预防-鱼精蛋白替代剂

- в 复合血小板因子4 (rPF4)
 - ρ 储存于血小板-α粒子内
 - ▶ 通过C一末端的特殊结合部位与肝素结合成rPF4一肝素复合物,灭活肝素
- в 肝素酶 I
 - p 一种灭活肝素的特异酶,
 - ▶ 可在**10**分钟内中和肝素。且未发现血小板减少症及对血小板 活性的抑制
- ß 低分子量鱼精蛋白 (LMWP)
 - p 具有较低的免疫原性和交叉反应性,
 - р 平均分子量1100道尔顿。比鱼精蛋白更有效

物理性中和----肝素分离装置

ß 肝素分离装置(HRD)

- p 是配有树脂的血浆透析过滤器
- p 可粘附肝素将其滤出体外

D208 大孔径树脂对肝素钠动态吸附与解吸特性研究

葛庆丰1,周雷1,于海1,王捷2,汪志君1*

(1. 扬州大学 食品科学与工程学院, 江苏 扬州 22

D208 树脂对肝素吸附过程的研究

摘 要: 在前期试验基础上,以优选出的 D20 吸附 与解吸特性的研究,确定 D208 大孔 $2 \text{ mL} \cdot \text{min}^{-1}$,上样浓度为 $6 \text{ mg} \cdot \text{mL}^{-1}$,上 $3 \text{ mol} \cdot \text{L}^{-1}$ 氯化钠溶液为洗脱液,洗脱速度为

关键词: D208 大孔径树脂; 肝素钠; 吸附; 1 中图分类号: TQ 464.1 文献标志 张万忠」,刘 伟2, 李文秀1, 胡国良1

(1. 沈阳化工学院, 辽宁 沈阳 110142; 2. 沈阳化工股份有限公司, 辽宁 沈阳 110021)

摘 要: 以大孔强碱型离子交换树脂 D208 对肝素吸附行为为研究对象,对肝素的吸附平衡和吸附动力学进行研究. 以 Freundlich 和 Langmuir 公式拟合 25 °C下的吸附等温线,研究结果表明:用 Langmuir 式拟合比较理想. D208 树脂对肝素的离子交换过程为一级反应,交换速率常数为 0.383 h⁻¹.

关键词: 肝素; D208 树脂; 吸附平衡; 离子交换

中图分类号: TQ464 文献标识码: A

鱼精蛋白毒性反应的治疗

- в 抗过敏:应用抗组胺药物和大剂量激素
- ß 心血管支持
 - 1.正性肌力药物:肾上腺素、异丙肾上腺素、多巴胺
 - 2.辅助循环
 - 3. 钙剂: 既可增加心肌收缩力,又具有抗过敏作用
- B 呼吸系统支持:吸氧、保持呼吸道通畅
- β 胰高血糖素(glucagon):对术前使用β—受体阻滞剂治疗的病人,应用肾上腺素可能作用不大。胰高血糖素可促进cAMP的合成,导致正性肌力、正性频率作用,以及松弛平滑肌
- в NO吸入:对急性肺动脉压升高的患者可吸入NO

给鱼精蛋白注意事项

- 1. 正确判断给药时机
- 2. 拮抗比例
- 3. 慢速
- 4. 给药途径
- 5. 混用一些钙剂和组胺拮抗剂
- 6. 追加量的判断
- 7. 拮抗血液不宜吸回氧合器

体外循环对鱼精蛋白反应的对策

鱼精蛋白 反应

提高警惕

随时辅助

体外循环后凝血障碍

- ß 肝素中和不全
- в 血小板功能低下或减少
- ß 凝血因子缺乏
- ß 鱼精蛋白过量
- ß 纤维蛋白溶解亢进
- B DIC
- ß 先天性或获得性溶血紊乱

肝素中和不全

- B CPB结束后,鱼精蛋白不能中和血循环中全部肝素,有10%残留在血液和胸腔渗液中
- B 1:1中和后,ACT回至正常,血中残留的低分子量肝素仍有低度抗凝活性,与血管平滑肌细胞受体结合,抑制血管收缩,使小血管和毛细血管出血增加

DIC

- ß 凝血后继发出血-大量microthrombus和 bleeding并存。 高凝到低凝过程
- ß 凝血—栓塞, 微循环障碍

器官功能障碍: 肝功能、内环境突然恶化, 膜肺氧合功能下降, 指端发黑变凉等。

B 出血(凝血因子消耗和继发纤溶)

ACT异常延长与肝素无关,皮肤出血点或瘀斑

B 一旦发生死亡率相当高

体外循环的凝血异常

	原因		预防		处理
1.	病人未肝素化	1.	确认全身肝素化,ACT360"	1.	停机
2.	未肝素化库血和含钙		插管,ACT>480"转机,20"	2.	更换氧合器或微栓滤器
	的溶液混合		后应再查ACT,以防肝素消	3.	血栓已进入体内应采取脑
3.	预充液未含肝素		耗		保护治疗措施:
4.	病人因素:如ATIII缺	2.	预充液给肝素:成人 2000	1)	头部冰帽
	乏. 肝素耐药		单位,小儿 1000单位(加	2)	大量激素
5.	体外循环时间长, 肝		血例外)	3)	脱水
	素消耗	3.	库血预充加肝素500 ^u /dl	4)	术后冬眠
5 .	鱼精蛋白拮抗后仍用	4.	ACT标本在给肝素3-5' 后从	5)	请心内科医生商讨CPB后的
	右心吸引		动脉抽出		溶栓治疗方案
7.	水温升高: 42℃	5.	ACT300"以上用右心吸引	4	
8.	给鱼精蛋白后输血间	6.	CPB10'以后抽ACT标本,以	1/18	
	隔过长		后每隔30'抽血测ACT	100	
9.	应用抑肽酶	7.	给鱼精蛋白后不能用右心吸	14.9	
			引		
		8.	给鱼精蛋白后输血不能间隔	K.	
			5' 以上	1	
		9.	病人因素应给新鲜血浆或大	40	
			量肝素,直至ACT达到	100	
			400",并严密监测ACT		
		10.	用抑肽酶ACT应大于750秒		

- ß 52岁,60kg,男性患者
- в 风心病: 行AVR术
- B 出血时间14秒,凝血时间4分
- ß 凝血酶原时间14秒
- в 凝血酶原活动度71.1%
- в pt计数245000/mm³

- в CPB前经锁骨下静脉静注肝素400u/kg
- в 10min后ACT470秒
- B 动静脉插管及右心吸引
- B 因给肝素时间至CPB开始间隔时间较长(30min),复查ACT255秒,立即停止右心吸引
- в 追加肝素5000U后,ACT256
- в 另取一台ACT仪,ACT260
- в 再次追加肝素5000U,ACT539

- ß检查瞳孔等大等圆
- ß静脉插管放血未发现血栓
- B动脉插管血液尚未进入体内
- ß 脱开动脉插管见30cm血栓

- ß 快速更换系统
- в 体内予以24000u肝素,5min测act760秒,开始 CPB
- в 3min后ACT675
- в 追加10000u后, ACT>1000(鼻温降至32℃)
- ß 复温至鼻咽温29 ℃, ACT780
- ß 复温至鼻咽温32 ℃, ACT500, 补肝素5000u
- в 10min后ACT730
- ß 复温至鼻咽温34.5℃,ACT380,此时心脏已复跳,血流动力学平稳,遂停止CPB

- в 术后约2小时清醒, 无神经系统异常
- в 术后需较大量的抗凝药物,华法林用量为
 - 一般患者的3-4倍
- B 术后追踪一年, 抗凝药物同前

病例特点

- в pt计数245000/mm³↑
- β 三次追加肝素开始CPB,发现血栓后,快速更换 系统
- ß 转中多次追加肝素,复温过程中代谢加快
- ß 复温至鼻咽温34.5℃, ACT380, 此时心脏已复跳, 血流动力学平稳, 立即停机
- ß 术后抗凝药物用量较一般患者大

小 结

- B CPB前ACT>480,未及时转机者,间隔时间长, 应重新测定ACT
- в 如发现肝素代谢异常,应补充足量肝素
- в CPB中随时监测ACT,尤其在复温阶段
- в CPB开始后发现凝血,应立即停机,更换系统

- в 4岁, 11kg, 男性患儿, 术前诊断室间隔缺损, 拟行修补术
- в Pt 90*109/L,BT30S,CT1min
- ß 转前常规静脉给予肝素400u/kg, ACT>480后开始转机,cpb中ACT维持在660-780s,手术顺利,停机平稳
- в 中和后20min后,心脏变暗,收缩无力
- в 气管内有啰音并吸出大量血性液体,气道阻力大,送气困 难
- B 立即心脏按压,气管内吸引,加压给氧,经激素、强心、利尿,血压不能维持,缺氧加重
- B 再次插管辅助循环后症状略有好转,40min后停机
- B 但肺部症状加重,心肌收缩无力,血压不能维持,抢救无效放弃

病例特点

ß 鱼精蛋白引起的不良反应

B 鱼精蛋白中和肝素引起爆发性非心源性肺水肿

病例小结

- в 本例为鱼精蛋白中和肝素后引起的严重不良反应,后果严重,治疗困难
- B 本例症状为典型的鱼精蛋白引起非心源性肺水肿,
 - ▶ 肝素一鱼精蛋白复合物激活补体C3及C5,裂解产物C3a,C5a引起肥大细胞释放组胺,平滑肌收缩,血管通透性增加
- B 监测从气管内吸出的水肿液蛋白含量高达血浆蛋白的72%-96%,可与左心衰鉴别
- в 预防与治疗:
 - ▶ 推荐主动脉或左房缓慢推注鱼精蛋白,尽量减少肺内组胺的释放 和肺血管反应
 - 水中应用激素,使用鱼精蛋白前给予抗过敏药,给予钙剂
 - p 鱼精蛋白替代物中和肝素
 - ▶ 不断吸引、保持呼吸道通畅给予间歇正压呼吸外,应予以抗过敏、 抗支气管痉挛处理,强心、利尿维持血压

总结

- B 正常凝血与抗凝生理
- ß 肝素抗凝的特点
 - p 抗凝监测
 - ▶ 肝素抗凝不足
 - ▶ 肝素替代物
 - ▶ 肝素涂层
- ß 鱼精蛋白中和
 - ▶ 毒性反应
 - ▶ 处理

道扩道扩出

赵 举: 13621252896

E-mail: zhaojucpb@yahoo.com.cn